Cortical bases of temporal asymmetries in auditory perception
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Introduction
%)

Behavioral experiments
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Functional neuronal assemblies clustered in space encode complex
sound features combining intensity and temporal information

perceptual asymmetries for intensity-modulated T imee T tmee D iatcount 0 wialeount
sounds are still elusive
The asymmetry of cortical population responses reflects an asymmetry

in perceived saliency

Two-photon recordmgs

We have measured the activity in 15 4d

Linear and classic linear-nonlinear (LN) models (a top left) fail to reproduce the cortical asymmetry

15 populations observed (b,c). We construct a multilayer non-linear model (a) which reproduces the asymmetry between

populations of neurons in the auditory 4083 neurons up- and down-ramps (b,c).

cortex of five awake mice using 2-§h(<:>)t(on
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— |\ — RN Beyond proposing a mechanism for perceptual asymmetry that may

'e 'e s emphasize approaching sound sources, our results suggest that ACx
assemblies produce complex responses that cannot be modeled by
classic LN models. A series of linear and nonlinear filters is needed to
demonstrating strong non-linearities reproduce such complex behavior and to reproduce the asymmetry.

Asymmetric sequences of population patterns occur during up- and down-ramps
ACX response to up- and down-ramps are asymmetric



